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in U.prviu stde-ulae aoineUG Enormous quantities of unleaded gasoline
~vupr wafoud tobela~veruoipo'.~ (UG) vapor are released into the air each

eran bptoariogsi .oi ....... year during transfer of UG to consumers.
..Gwas no.. epradnii: The general public is most commonly
~iice. Z~~cvcr, UG1~5P~t ' exposed to UG in the form of vapors that

ofboth il n rl nC evaporate during refueling vehicles at ser-
condtios o~ii~ cacer ioasayWe ued vice stations (1). The health risk of such
an I itaa-omoio~r potocol~ (k~f intermittent lo-dose exposure to UG

minewhetherUGvapor acts.. a. a live vapor is difficult to assess. In a cancer
rumorromotrin mle mie andtoeam bioassay, a relatively high exposure level of

inprli~rtieef0rranabciiu UG vapor (2056 ppm, 6 hr/day, 5
.to tuor developet wledyodml days/week) but not lower levels (67 or 292
.6C31niewr iAete itN. pmUG) increased the incidence of hepa-

nitr.. odi.hy.amin.(DEN.......g, tocellular tumors in female B6C3F mice
issrspritnealy)QtV~Md. S~tIISS~ ~ (2) In contrast, the incidence of hepatocel-

non6 h/day, .a ...ee..r...to. lular tumors in male B6C3F mice was not
or 246 pmofP8-6Ilem UG.UG ~ increased at any exposure level of UG
meat caused uigilficM 2.~ild ~(2,3). This sex-specific hepatocarcinogenic

inthenainbet11 epaicra's effect of UG in mice has been the subject
es 1~OinDEN-Ifae miewhres t of several mechanistic studies. Tilbury et

macroscoc naas~e nesnnn a.() showed that 2056 pmU ao
..i.ate..c..Atee ltI..C (AW) induced hepatocyte proliferation without
which.we. e tdttttty euhl evidence of hepatotoxicity in both male

~~~~~~ ~~ and female B6C3F mice only in the first
Dail incresed.oth.is..... ..l.m week of 13 weeks of intermittent exposure.

(threfoldand he v*rrra fration The lack of sustained hepatocyte prolifera-
(twofld)oj ieA'*ko nu~h tion and the induction of proliferation in

.-Umbero MW peruniaits1: ~ both sexes of mice make mitogenesis an
unlikely explanation for the sex-specific

Ise(Pe.- ariiyVaasn I iduction of liver cancer by UG.
Cymr hn1-~4os nn&'i~4 Nonetheless, many hepatic mitogens are
wit..u.DEN.. known mouse liver tumor promoters ()

L5~ and UG vapor was subsequently shown to
Aiewit 5-. to? be a weak liver tumor promoter in female

ndeasrdi ssqt3r B6C3F mice initiated with N-nitrosodi-
index~u} in ' .jd ethylnitrosamine (DEN) (6). UG, includ-

ix~~~ did ~~~~ ~~ ing the specific blend used in the cancer
nonlesionedliver, - -LI bioassay, has shown little or no genotoxic
in AHFwasabout 3G% igher iii activity in a variety of assays (-)

t)EN/UG-`it`reated mi.e.elat.ve.o..t.ceRecently, MacGregor et al. (10) report-
treated..t E ...one..Th. edaa.h. ed that 2056 ppm of UG caused a high
thatUGepor ....r.... inidence of uterine atrophy in female
and th.t .no ......... mice. in the cancer bioassay, suggesting that

eraton nAP, G ats s alivr tmor UG may disrupt the hormonal balance of
prmtriJot aead&naemc female mice. We hypothesized that UG

thes fining conras wit th lac of might have antiestrogenic effects and that
bepaocacingencit ofUG n mle ice estrogen antagonism might be causally

in a: cancer:bosa.Kywrs lee related to liver tumor promotion in female
hPatIc foci"',,cl:r'~ tolvrgt- mc (11) because estrogens and/or ovarian

line ruorpomoion.Eri/ronHe~lsb factors are known to inhibit liver tumor
0espc1O-960 (95)po tinn mice (12-18). Indeed, inter-

Mittent exposure to 2056 ppm but not to
292 ppmn of UG vapor for 16 weeks pro-
moted the growth of preneoplastic lesions
and decreased relative uterine weight in
DEN-initiated female mice (11). UG also
antagonized several pharmacological effects
of exogenous ethinyl. estradiol (11). UG by
intragastric intubation caused a dose-

dependent increase in estrogen metabolic
capacity in hepatocytes isolated from
female mice (151), thus suggesting a mecha-
nism by which UG might antagonize
estrogen. Although UG antagonizes phar-
macological levels of estrogen, a clear
causal relationship between antagonism of
endogenous estrogens and liver tumor pro-
motion by UG has not been established.

An assumption of this antiestrogenic
hypothesis of UG carcinogenesis is that
antagonism of the presumably low estro-
gen levels in male mice would be inconse-
quential with regard to liver tumor promo-
tion, thus accounting for the lack of hepa-
tocarcinogenicity of UG in male mice.
Moreover, the strong liver-tumor-promot-
ing effect of androgens might be expected
to be the predominant hormonal influence
in male mice (12,13,17'. However, given
the similar acute mitogenic response of
male and female mouse liver to UG vapor
and the potential relationship of mito-
genicity to tumor promotion, it was of
interest to test whether UG acted as a liver
tumor promoter in male mice. In the pre-
sent study, the possible tumor-promoting
activity of UG in male mice was tested in
the same initiation-promotion model in
which liver tumor promotion by UG was
demonstrated in female mice (5,11). In
addition, the cellular basis of such promot-
ing activity was examined by analysis of
hepatocellular proliferation in altered
hepatic foci (AHF) and surrounding non-
lesioned liver.

Materials and Methods
PS-6 blend UG was provided by the
American Petroleum Institute and was
from the same lot used in the cancer bioas-
say. Unless otherwise specified, all other
chemicals were obtained from Sigma
Chemical Company (St. Louis, Missouri).

All experiments were conducted under
NIH guidelines for the care and use of lab-
oratory animals and were approved by the
CIIT Institutional Animal Care and Use
Committee. Male C3H/HeNCrlBR mice
and female C57BL/6NCrIBR mice free of
common murine pathogens were obtained
from Charles River Breeding Labs
(Raleigh, North Carolina) and acclimated
for 10 days. Mice were housed individually
in polystyrene cages on a-cellulose bed-
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ding in a temperature- and humidity-con-
trolled room. Mice were kept on a 12-hr
light-dark cycle, with the light period
extending from 0600 hr to 1800 hr. Food
(NIH-07 open formula diet; Ziegler
Brothers, Gardners, Pennsylvania) and fil-
ter-purified tap water were provided ad
libitum. The mice were then bred, and the
resulting B6C3F1 offspring were treated as
described below.

At exactly 12 days of age, we injected
male B6C3F1 mice intraperitoneally with
either 5.0 mg/kg DEN in 0.9% NaCl or
0.9% NaCl alone (7.1 ml/kg). The mice
were weaned at 4-6 weeks of age and
housed individually as described above.

At 5-7 weeks of age, the B6C3F1 mice
from the DEN initiation and NaCl control
groups were separately randomized by
weight, assigned to one of two groups (n =
12), and transferred to individual hanging
stainless-steel cages contained in a 1-m
whole-body inhalation chamber. The mice
were exposed to 0 or 2046 ppm (target con-
centration) of wholly vaporized PS-6 blend
UG for 6 hr/day, 5 days/week, for 16 weeks.
Exposures were routinely conducted from
0800 hr to 1400 hr on weekdays, including
holidays. The chamber design, exposure gen-
eration system, and monitoring system were
exactly as described previously (5), and
chamber concentrations of UG were deter-
mined hourly. Average daily chamber con-
centrations of UG ranged from 1741 to
2146 ppm, with a mean and SD of 2046 ±
63 ppm (99.5% of target level). Filter-puri-
fied tap water was available ad libitum,
whereas food was only available during non-
exposure periods. We recorded clinical
observations and body weights weekly.

Three days before necropsy, mice were
implanted subcutaneously with osmotic
pumps (Alzet model 2001, 1 pL/hr; Alza
Corporation, Palo Alto, California) con-
taining 16 mg/mL 5-bromo-2'-deoxyuri-
dine (BrdU) dissolved in phosphate-
buffered saline (Gibco-BRL, Bethesda,
Maryland). The pH of the BrdU solution
was adjusted to 7.2 ± 0.2 with sodium
hydroxide.
We evaluated BrdU incorporation

immunohistochemically in liver sections
and hepatocyte labeling index (LI) in non-
lesioned areas of liver sections as described
previously (5). At least 2000 nuclei in the
left lobe were counted with the experi-
menter blind to the treatment group.

For preneoplastic lesions, all hepatocel-
lular nuclei of all basophilic lesions that
completely fit within the grid of a 1Ox
objective were counted. The maximum
area of such a lesion was calculated to be
0.58 mm2, which corresponds to a focal
diameter of 0.85 mm. We chose this cutoff
point because of the technical difficulty of
determining BrdU labeling indices of larg-

er lesions. The preneoplastic lesions were
readily identifiable in hematoxylin and
eosin (H&E)-stained sections and were
further delineated by their high labeling
indices relative to nonlesioned liver.

Approximately 20 hr after the last
inhalation exposure, mice were weighed,
anesthetized with isoflurane, and exsan-
guinated. Blood collected by cardiac punc-
ture was allowed to clot for 0.5-1.0 hr and
then centrifuged to obtain serum. Testes
were removed and weighed together. Livers
were removed, weighed, and examined for
the presence of macroscopic lesions. The
number of macroscopic hepatic masses .1
mm was determined. Sections of the left,
median right, and right anterior lobes were
fixed in 10% buffered formalin. The bal-
ance of the liver was minced, rinsed with
ice-cold isotonic KCl-Tris (0.154 M KCl,
0.050 M Tris, pH 7.4), chilled on ice, and
used to prepare microsomes as described
previously (5). Microsomes were pooled
from three mice in the same treatment
group.

The formalin was replaced by 70%
ethanol 48 hr after necropsy. Tissues were
embedded in paraffin, sectioned at 5 pm,
stained with H&E, and examined micro-
scopically. Pituitaries were removed after

fixation in formalin, weighed to the nearest
milligram, and processed for microscopic
examination.

We determined the total area of liver at
each sample site occupied on an H&E-
stained section from the inhalation experi-
ment using an Image-1 image processing
system (Universal Imaging Corporation,
West Chester, Pennsylvania). Sections
were examined for the presence of AHF
.10 cells in size with the experimenter
blind to the treatment group, and foci
were classified according to histopathologi-
cal phenotype using standard criteria (20).
We recorded the area of each focus and
used it to calculate the number and volume
of foci according to the stereological
method of Pugh et al. (21) using a focal
profile cutoffwith a radius of 65 pm.

We assayed hepatic microsomal pen-
toxyresorufin-Odealkylase (PROD) activi-
ty essentially as described by Lubet et al.
(22). Microsomal protein was assayed with
Coomassie-plus protein assay reagent
(Pierce, Rockford, Illinois) using bovine
serum albumin (Pierce) as a standard.
Sorbitol dehydrogenase (SDH) activity in
serum was determined immediately after
necropsy using a commercial kit (#50-UV)
from Sigma.

Table 1. Final body weights, relative liver weight, hepatic PROD activity, and serum SDH activity in male
B6C3F1 mice

Hepatic
Final body Liver weight PROD activityC Serum SDH

Treatment weightb(g) (% of body weight)b (pmol/min/mg) activityb(U/L)
Saline/control 35.2 ± 2.3 5.03 ± 0.36 18.5 ± 2.9 24.5 ± 4.0
Saline/UG 34.7 ± 2.1 5.82 ± 0.81 215.0 ± 19.9* 30.8 ± 6.0
DEN/control 35.6 ± 2.4 6.36 ± 0.56 11.2 ± 2.2 27.3 ± 4.1
DEN/UG 36.0 ± 2.8 8.30 ± 0.86 172.0 ± 27.4** 35.0 ± 8.7

Abbreviations: PROD, pentoxyresorufin-C-dealkylase; SDH, sorbital dehydrogenase; DEN, N-nitrodiethy-
lamine; UG, unleaded gasoline.
"Male B6C3FJ mice were injected with DEN (5 mg/kg, intraperitoneally) or vehicle (saline) at 12 days of
age. Beginning at 5-7 weeks of age, mice were treated with 0 (control) or 2046 ppm UG vapor for 6 hr/day
and 5 days/week for 16 weeks.
bValues are the means ± SD of 11-12 mice.
Values are the means ± SD of four microsomal samples that were each pooled from three mice.
p < 0.05 as compared to saline/control group.
**p < 0.05 as compared to DEN/control group.

Table 2. Number of gross hepatic masses and parameters of altered hepatic foci in DEN-initiated mice

Altered hepatic foci
Promotion No. of gross Density Mean volume Volume fraction
treatment hepatic masses 21 mm (No./liver)b (103 x mm3) (%)
Saline/control 0 0c 0 0
Saline/UG 0 0c 0 0
DEN/controld 23.3 ± 13.6 802 ± 419 292.7 ± 210.0 9.51 ± 5.72
DEN/UGd 52.9 ± 20.1 725 ± 259 851.9 ± 512.1 17.75 ± 8.16

Abbreviations: DEN, N-nitrosodiethylamine; UG, unleaded gasoline.
aMale B6C3F1 mice were injected with DEN (5 mg/kg, intraperitoneally) at 12 days of age. Beginning at
5-7 weeks of age, mice were treated with 0 (control) or 2046 ppm UG vapor for 6 hr/day and 5 days/week
for 16 weeks.
bAssumes 1 g liver = 1 cm3
COnly one altered hepatic focus was detected in one animal of each of these groups. Thus, calculation of
focal parameters is omitted for these groups.
dValues are means ± SD of 11-12 mice.
p < 0.05 as compared to DEN control.
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We compared mean values for control
and DEN-initiated mice to the corre-
sponding UG-treated group by an
unpaired, two-tailed t-test. To fulfill the
requirement for homogeneity of variance,
foci data were log transformed before sta-
tistical analysis. Differences were consid-
ered significant at p < 0.05.

Results
Inhalation exposures were not begun until
the mice were 5-7 weeks old because that
is the age at which exposures were begun
in the cancer bioassay of UG. Treatment
with DEN, UG, or the combination did
not significantly affect body weight relative
to controls at any time point (data not
shown), and no adverse clinical signs were
observed. One DEN/UG-treated mouse
died as a result of a cage accident.

Treatment with UG increased liver
weight with respect to controls for both
noninitiated and DEN-initiated mice
(Table 1). UG-induced hepatomegaly was
greater in DEN-initiated mice, evidently
due to the presence of numerous pale,
white lesions in that group. DEN-initiated
mice not exposed to UG had approximate-
ly half as many macroscopic neoplasms as
in the DEN/UG group, and no neoplasms
were observed grossly in initiation control
mice (Table 2). Testicular weight and pitu-
itary weight were not significantly affected
by UG exposure (data not shown).

Induction of hepatic PROD activity,
which is catalyzed principally by CYP2B
(23,24), has been correlated with liver
tumor promotion in rodents (25,26).
Because hepatic PROD activity was
induced in female mice exposed to 2056
ppm UG for 13 weeks (5), the possible
effect ofUG on hepatic PROD activity in
male mice was determined. UG induced
hepatic PROD by about 12-fold in unini-
tiated mice and by about 16-fold in DEN-
initiated mice relative to corresponding
controls (Table 1).

Serum SDH activity, a marker of
hepatic necrosis, was not significantly ele-
vated by UG treatment (Table 1), which is
consistent with the lack of hepatotoxicity
in male or female mice exposed to up to
2056 ppm UG for 13 weeks (4).

Testes and pituitaries ofDEN, UG, and
DEN/UG-treated mice were histologically
indistinguishable from those of control
mice. Modest centrilobular hepatocyte
swelling was observed in H&E-stained liver
sections from mice treated with 2056 ppm
UG with or without DEN treatment; how-
ever, no hepatic necrosis was observed. In
DEN-initiated mice, a large number of
AHF were observed in H&E liver sections.
Only one AHF was found in one animal in
each of the noninitiated groups.
Approximately 90% of the AHF were

basophilic, and the majority of the remain-
der were mixed (basophilic/clear cell).
Because the vast majority of AHF were
basophilic, AHF were grouped together for
the purpose of stereological analysis. As
shown in Table 2, UG treatment increased
the mean volume and volume fraction occu-
pied by AHF by threefold and twofold,
respectively. While this may seem to be a
subtle effect, it is worth noting that the
AHF in the DEN/control group were dear-
ly at an advanced stage of development as
judged by the relatively large mean volume
and volume fraction occupied by AHF
(Table 2). Thus, a twofold increase in vol-
ume fraction when volume fraction was
already near 10% in the DEN/control
group represents a highly biologically signif-
icant increase. The number ofAHF per unit
area, however, was not increased by UG
treatment in DEN-initiated mice (Table 2).

To determine whether hepatocyte pro-
liferation rates differed between treatment
groups, mice were treated with BrdU via
osmotic pumps for 3 days before necropsy,
and BrdU incorporation was evaluated
immunohistochemically in liver sections.
UG did not increase nonlesioned hepato-
cyte LI in initiation control or DEN-initi-
ated mice (Table 3). The hepatocyte LI of
AHF was substantially greater than that of
nonlesioned liver, as expected (27-29).
The mean hepatocyte LI of AHF from
DEN/UG-treated mice was 29% greater (p
< 0.01) than the mean hepatocyte LI of
AHF from mice treated with DEN alone
(Table 3). For these data, the hepatocyte
LI of all the AHF in a given mouse were
averaged together, and the value shown in
Table 3 is the grand mean of all the mice
in a group. Since different numbers of
AHF were counted for each mouse, this
value could be unduly influenced by mice
with relatively few AHF. Thus, we also cal-
culated the mean LI of the aggregate of
UG-treated AHF (36.9 ± 7.6%, n = 63)

Table 3. Hepatocyte BrdU labeling indices in
lesioned and nonlesioned liver of male mice

Hepatocyte BrdU labeling index(%)
Treatmenta Lesionedb NonlesionedC
Saline/control NA 0.37 ± 0.17
Saline/UG NA 0.28 ± 0.12
DEN/control 29.7 ± 4.9 0.49 ± 0.30
DEN/UG 37.0 ± 4.0* 0.38 ± 0.24

Abbreviations: BrdU, 5-bromo-2'-deoxyuridine;
UG, unleaded gasoline; DEN, N-nitrosodiethy-
lamine; NA, not applicable.
aMale B6C3FJ mice were injected with DEN (5
mg/kg, intraperitoneally) at 12 days of age.
Beginning at 5-7 weeks of age, mice were treated
with 0 (control) or 2046 ppm UG vapor for 6 hr/day
and 5 days/week for 16 weeks.
b\alues are the means ± SD of the mean labeling
indices of altered hepatic foci from mice.
CValues are the means ± SD of 8-9 mice.
p < 0.05 as compared to DEN/control group.

and the aggregate of control AHF (28.7 ±
9.4%, n = 99), and the difference between
the treatment groups remained highly sig-
nificant (p < 0.0001).

Consistent with the increased prolifera-
tive rate of AHF from UG-treated mice,
UG caused a shift in the size of AHF foci
toward greater size relative to AHF from
control mice (Fig. 1). This finding, which
was obtained by counting the number of
hepatocellular nuclei of AHF, indepen-
dently corroborated the increase in mean
size estimated by quantitative stereology
(Table 2). However, the average hepato-
cyte LI ofAHF in the different size classes
was similar within a given treatment group
[e.g., the proliferative rate in AHF of all
size classes in the DEN/UG group was
about 37% (data not shown)].

Discussion
Our data demonstrate that UG exposure
under similar exposure conditions to the
cancer bioassay of UG (2) increased the
size of AHF as well as the number of
macroscopic neoplasms in DEN-initiated
male B6C3F1 mice. Because UG did not
also increase the number ofAHF in DEN-
initiated mice, the increased number of
macroscopic neoplasms was likely a reflec-
tion of the stimulation of growth of AHF
by UG. The failure of UG to increase the
number of AHF in male or female mice
(5,11) is consistent with the lack of signifi-
cant genotoxic activity of UG (7-9). By
standard definitions of tumor promotion
(30), these data demonstrate that UG is a
liver tumor promoter in male B6C3F1
mice. UG also induced hepatic PROD
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Figure 1. Size class of distribution of altered heptic
foci (AHF) in N-nitrosodiethylamine (DEN)-initiated
mice. Male B6C3F1 mice were injected intraperi-
toneally with DEN (5 mg/kg) or saline. Beginning at
5-7 weeks of age, mice were exposed to 0 or 2046
ppm of unleaded gasoline (UG) vapor for 6 hr/day,
5 days/week, for 16 weeks. The number of cells in
all AHF <0.85 mm in diameter was determined on
5'-bromodeoxyuridine-stained liver sections (n =
8-9), and the AHF were grouped into size classes
as shown. The number of AHF in each size class is
given as a percentage of the total counted, which
was 99 and 63 in the DEN/control and DEN/UG
groups, respectively.

Environmental Health Perspectives

I - I

698



as-- . a a a -a-a..a
activity, which fits with the correlation of
CYP2B induction and the phenomenon of
liver tumor promotion in rodents (25,26).

The liver-tumor-promoting activity of
UG in male mice in this study appears to
be at odds with the lack of carcinogenic
activity in male mice in the cancer bioassay
of UG (2). There are several potential rea-
sons for this apparent discrepancy. First,
the infant mouse initiation-promotion
model used to detect the tumor promotion
effect of UG may be more sensitive than
the cancer bioassay, and only relatively
robust promotional effects in the infant
mouse model predict promotion activity in
longer-term studies. For example, under
identical exposure conditions, UG induced
a fourfold increase in volume of AHF in
female B6C3F1 mice (11) versus a twofold
increase in male mice in the present study,
and UG induced liver tumors in female
and not in male mice in the cancer bioas-
say (2). However, the quantitative differ-
ence in UG promotion activity between
male and female mice most likely is, in
part, a consequence of the 16-week time
point chosen for analysis. AHF in the
DEN/control group were about fourfold
larger in male than in female mice at this
time point (11), which is consistent with
the well-established faster growth of AHF
in male mice in the infant mouse model
(28,29). Thus, it would have been relative-
ly difficult to demonstrate the same four-
fold increase in size ofAHF in male versus
female mice at the 16-week time point.
Nevertheless, these data caution against the
use of sensitive tumor promotion models
to predict cancer bioassay outcomes.

A second possible explanation for why
UG acted as a liver tumor promoter in the
present study but was not hepatocarcino-
genic in male mice in the chronic bioassay
is that the biology of DEN-initiated foci
may be significantly different from the
biology of the spontaneous foci that UG
presumably acted upon in the chronic
bioassay. It is well known that the pheno-
types and genotypes ofAHF are heteroge-
neous, even among morphologically simi-
lar AHF (17,31,32). DEN is a potent
mutagen, and its administration to mice
yields a spectrum of AHF genotypes that
may not be the same ones that progressed
to liver tumors in the cancer bioassay of
UG (17,33).

A third potential explanation for the
apparent discrepancy between the present
study and the results of the cancer bioassay
of UG is that some factor(s) may be lack-
ing in males, or present in females, that
allows growth and progression of UG-pro-
moted AHF to hepatic tumors selectively
in females. For example, the particular hor-
monal milieu of the female mouse may
have favored the progression of the types of

spontaneous AHF promoted by UG in the
cancer bioassay.

A novel finding in the present study
was the small (-30%) but highly signifi-
cant increase in hepatocyte LI in basophilic
AHF from DEN-initiated, UG-treated
mice relative to AHF from mice treated
with DEN alone. UG did not increase the
proliferative rate of surrounding nonle-
sioned hepatocytes, which is consistent
with previous data showing that UG-
induced hepatocyte proliferation disap-
peared after the first week of chronic,
intermittent exposure (4). We are aware of
only one other report (34) in which a
mouse liver tumor promoter was shown to
selectively increase the proliferative rate of
AHF in male mice. In that study, pheno-
barbital selectively increased the LI of
eosinophilic and not basophilic AHF but
concomitantly suppressed LI in nonle-
sioned hepatocytes in female C3H mice
(34). In rats, phenobarbital increased the
number and size of DEN-initiated y-glu-
tamyl transpeptidase-positive nodules but
did not change the average LI of these
nodules (32. In another study, the LI of y-
glutamyl transpeptidase-positive hepato-
cytes as well as the LI of nonlesioned hepa-
tocytes was increased by several liver tumor
promoters, including phenobarbital,
cyproterone acetate, and nafenopin (27).

The fact that AHF were larger, on aver-
age, in UG-treated mice might be a conse-
quence of either a greater cellular birth
rate, a decreased cellular death rate, or
both, in these focal hepatocytes (6). The
finding of a higher LI in AHF of UG-
treated mice suggests that a greater cellular
birth rate in these AHF at least contributed
to promotion by UG. However, the mole-
cular mechanism behind this increased
proliferative rate remains to be determined.
We proposed that UG might have antie-
strogenic effects in female mice and that
estrogen antagonism might secondarily
lead to liver tumor promotion (11,19).
The molecular basis for the inhibitory
effect of estrogen on promotion in mice is
not known but has been observed in both
male and female mice (13,14,18,19). The
antiestrogenic hypothesis seems less plausi-
ble in male mice, which would be expected
to have lower endogenous levels of estro-
gen for the UG to act upon. Indeed, we
did not detect any effect of UG on testes
or pituitary of male mice, whereas UG
decreased ovarian and pituitary weight in
female mice (11). However, we cannot rule
out the possibility that UG-induced liver
tumor promotion in our two-stage model
follows a similar antiestrogenic mechanism
in both sexes of mice. Clearly, more studies
are needed to define the biochemical/mole-
cular mechanism of UG-induced tumor
promotion in both sexes of mice.

It is noteworthy that wholly vaporized
UG, which has the composition of liquid
gasoline, was used in both the cancer
bioassay of UG (2) and the present liver
tumor promotion study of UG, whereas
most human exposure to UG involves UG
vapor. The low boiling-point components
of liquid UG are disproportionately repre-
sented in UG vapor (1,35). However, high
boiling-point components of UG, which
account for the bulk of the hepatic mito-
genic and P450-inducing activity of liquid
UG, are present in wholly vaporized UG
(36). Thus, if such hepatic activities are
causally related to liver tumor promotion
by UG, the results of this tumor promo-
tion study and the cancer bioassay of UG
may well overstate human liver cancer risk
from UG exposure.

In summary, we have shown that UG
promotes the development of DEN-initiat-
ed AHF in male mice under exposure con-
ditions similar to those that failed to
increase liver tumor incidence in a cancer
bioassay of UG. Promotion of DEN-initi-
ated AHF in male mice was associated with
a selective increase in proliferation of focal
hepatocytes. Further studies are needed to
define the mechanism of growth stimula-
tion of hepatic preneoplastic lesions by UG
and elucidate the reason such stimulation
results in hepatic neoplasia selectively in
female mice. Our findings illustrate that
tumor-promoting activity does not neces-
sarily predict carcinogenicity and that
analysis of chemically induced hepatocyte
proliferation in nonlesioned liver does not
necessarily predict induced proliferation in
preneoplastic lesions.
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